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Developing further the conclusions reached in an earlier paper, it is proposed to 
interpret quantum mechanics as a theory of extended particles. Certain restric- 
tions are placed on the underlying model for extended particles. Wave-particle 
duality is interpreted in the context of the pulsations of the particle. The wave 
function is related to the (random) extension of the particle. It is shown that this 
wave function satisfies the Schr6dinger equation. In this theory, the peculiarities 
of quantum probabilities are related to the assumption that the particle is 
shell-like. It is shown that a representation of dynamical variables by positive- 
operator-valued measures is possible. The empirical predictions of this theory are 
pointed out, along with some unsolved problems. It is concluded that it is, at 
least partially, possible to interpret quantum mechanics as a semiclassical de- 
scription of the dynamics of extended particles. If this interpretation is correct, 
quantum mechanics would fail at very high energies, and, possibly, at very low 
energies. 

1. I N T R O D U C T I O N  

The p r o b l e m  of  in te rp re t ing  q u a n t u m  mechanics  is well  known,  and  a 
review of  the  be t t e r -known  in te rp re ta t ions  can be  found  in J a m m e r  (1974). 

I 
M o r e  recently,  a large class of  ( local)  h idden  var iable  theories  have ap-  
p a r e n t l y  been  fals if ied (Clauser  and  Shimony,  1978), a l though the re levance 
of  Bell 's  inequal i t ies  has  been  q u e s t i o n e d - - f o r  i n s t ance ,  by  Lochak  (1977). 

Here,  we p ropose  to a d o p t  an a l toge ther  new approach .  The  logical  
basis  of  this a p p r o a c h  is the  asser t ion  (Raju,  1980a) that  an in t e rp re t a t ion  of  
the  precise  form of  the i nde t e rminacy  re la t ion  necessar i ly  leads  to the 

1A preliminary version of the considerations in this paper appeared as Part II of a paper, 
entitled "Relativistic and Statistical Foundations of Quantum Mechanics," presented at the 
Einstein Centenary Symposium, Amedabad, January 29-February 3, 1979. 
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following conclusions: 
(i) The usual interpretation of the indeterminacy relations is fallacious 

within the axiomatic framework for quantum mechanics. 
(ii) The particles (of nonzero rest mass) described by quantum mechan- 

ics cannot be localized, and, hence, must correspond to extended mass 
distributions. 

It is therefore natural to think that the peculiar pattern of similarities 
and differences between classical and quantum mechanics arises because of 
the extended nature of real particles. In fact, by virtue of (ii), there is a 
definite theoretical necessity to interpret quantum mechanics as a theory of 
extended particles. In this paper, it is pointed out that many significant 
concepts of quantum mechanics have a natural counterpart in the context of 
a semiclassical description of the dynamics of extended particles. Looking at 
it in another way, the ideas presented below also have a direct bearing on 
the problem of describing the dynamics of extended particles in a manner 
that is Lorentz covariant and compatible with quantum mechanics. 

2. THE M O D E L  FOR E X T E N D E D  PARTICLES 

The further development of this theory requires a model for extended 
particles. Apart from spherical symmetry in the rest frame, the main 
restrictions to be imposed on such a model would be the following: 

(A) The particle interacts at its boundary with the external world. 
(B) The particle pulsates uniformly in the rest frame. 

Stated more mathematically, restriction (A) asserts that the mass of the 
particle is distributed (in the rest frame) over a spherically symmetric 
hypersurface, i.e., the particle is shell-like. From the point of view of 
relativity, such shell-like models seem to be necessary to overcome the 
classical phenomenological argument concerning the imbalance between 
gravitational and electromagnetic forces. A similar assumption has also 
been used in time-symmetric electrodynamics by Dirac (1938) and Raju 
(1980b), although the empirical consequences cannot be said to have been 
conclusively verified. 

Such shell-like models have been constructed by Dirac (1962), for 
instance, by introducing new phenomenology to offset the inordinate imbal- 
ance between gravitational and electromagnetic forces. On the other hand, 
Raju (1981a) has proposed that such shell-like models can be obtained by 
suitably altering the usual junction conditions in relativity--if a surface 
layer of matter does not collapse under its self-action, there is no reason for 
a layer of charged matter to disintegrate. In fact, preliminary results indicate 



Interpretation of Quantum Mechanics 683 

that charged surface layers can exist 2 and that oscillating solutions are 
possible. Although oscillating solutions also occur in Dirac's (1962) model, 
the advantage of this approach is that no new phenomenology is introduced. 

Thus, we have a picture of an extended particle as an oscillating surface 
layer, obtained with or without additional phenomenology. With this pic- 
ture we proceed with the interpretation of quantum mechanics. 

Planck's Constant. The first step is to introduce an analog of the 
Planck constant into the theory, and connect it with the particular model, of 
extended particles, under consideration. This is done by defining a constant 
h 0 by 

Eo=h0% (1) 

where E 0 is the energy, and v 0 is the frequency of oscillation, measured in 
the rest frame. However, if (1) is to agree with the usual quantum mechani- 
cal relationship, some more restrictions are necessary on the model of 
extended particles: 

(C) The oscillations of the particle are linear. 
(D) The frequency of oscillation, 1,0, is proportional to the proper 

mass. 
(E) The constant of proportionality is the Planck constant (with 

c - - l ) .  

These restrictions may seem to be too unreasonable for a realistic 
model of extended particles. However, with suitable generalizations of 
existing techniques (proposed in Raju, 198 l a) preliminary results indicate 
that it may be possible to satisfy all the above restrictions, because the 
equations of motion for the surface layer turn out to be underdetermined. 
With Dirac's (1962) model, in the linear approximation, restrictions (A)-(D)  
are satisfied though (E) is not. The consequences of any possible nonlinear- 
ity are evaluated in Section 7. 

Thus, in the context of extended particles, the wave-part icle duality, 
implicit in (1), is interpreted as arising from the pulsations of the particle. 
Incidentally, we observe that the frequency of oscillation also leads to a 

2 More precisely, we are considering a hypersurface at the junction of the Reissner-Nordstrom 
and Minkowski metrics, described by the conditions that the components of the metric tensor 
be continuous across the hypersurface with essential discontinuities in some of their first 
derivatives. The results are rigorously derived by using nonstandard analysis to define 
products and compositions with the Dirac delta distribution (Raju, 1981b). A similar analysis 
when applied (Raju, 1981a) to the Schwarzschild-Minkowski junction, studied by earlier 
authors (Papapetrou and Hamoui, 1968, 1979; Evans, 1977), yields identical results. 
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Lorentz-covariant description of the energy of the center of mass of the 
particle, 

3. THE WAVE FUNCTION 

The next step is to introduce statistical considerations into the theory. 
This does not require any further restrictions because a particle in the 
real universe is never isolated. The external field, therefore, is at best sta- 
tistically determined. For instance, the Brownian motion of the stars 
(Chandrashekhar, 1943) would induce fluctuations in the external gravita- 
tional field. Similarly, the random motion of nearby charged particles may 
be expected to produce small fluctuations in the external metric. 

As a result of these fluctuations, the extension of the particle (i.e., the 
curvature of the spherical shell) and the phase of its oscillations, at any 
instant, 3 are random variables. We can combine the two to obtain a single, 
complex-valued random variable q~. E4~[d?[ 2 is, then, just the mean surface 
area of the particle ([ if! being the extension), and this must, presumably, be 
finite. Therefore, q~EL2=L2(f~,B,P), ( f ] ,B,P)  being a standard Borel 
probability space. 4~ would be taken to correspond to the quantum mechani- 
cal wave function. 

This assignment of a random variable to the state can be viewed 
classically in terms of incomplete information. But, because the entire 
cosmos is responsible for keeping this information incomplete, it is con- 
ceivable that it is impossible, even in principle, to have complete informa- 
tion about the state. 

4. THE SCHRODINGER EQUATION 

Suppose the particle is in equilibrium with its surroundings; then the 
random process ~(t)  is stationary in the narrow sense, i.e., ifp(ta,  t 2 . . . .  , tk) 
represents the joint distribution of q,(q), dp(t2),... , dp(tk) then 

p( t  I +s ,  t 2 + s  . . . . .  t k+s )=p( t l ,  t2,:. .  , tk) (2) 

Equation (2) merely states that in statistical equilibrium a change of the 
time origin has no physical significance. 

Because q~ E L  2, stationarity in the narrow sense implies stationarity in 
the wide sense. That is, Eco(t) is independent of t, and the covariance 
E~(t)eo(s) is a function only of the difference t - s .  It follows (Rozanov, 

3It is possible to speak of "the curvature of the shell at any instant," under the usual restriction 
that the normal to the shell be timelike. 
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1967) that the map U(t), defined by 

(3) 

extends to a group of unitary operators on the subspace 

H~ = span{q~(s), sE•  ) (4) 

U(t) extends trivially to L 2, and, by Stone's theorem, there exists a densely 
defined self-adjoint operator H 1 on L 2, such that 

V( t ):exp(--iHlt ) (5) 

The operator H 1 satisfies the differential equation 

U(t) =- iH,  U(t) ~t (6) 

or, since q~(t)= U(t)q,(O), 

z--~:H,~ (7) 

Let 

H--h0n, (S) 

where h 0 is defined by (1); then the spectrum of H just consists of the 
energy values of the particle, hence H is the Hamiltonian operator of 
quantum mechanics. H is trivially bounded below, and if h 0 is indeed the 
Planck constant then (7) is just the Schr0dinger equation. 

Thus, in the present theory, the Schr0dinger equation appears as a 
consequence of (1) and some very general statistical laws. 

5. QUANTUM PROBABILITIES AND THE OPERATOR 
REPRESENTATION 

Wigner, in 1932, observed, and later proved (Wigner, 1972), that a joint 
distribution for position and momentum, consistent with linearity, does not 
exist in quantum mechanics. This observation has led to numerous attempts 
to formalize the notion of quantum probabilities, in the belief that they are 
significantly different from classical probabilities (in the sense of measure 
theory). On the other hand, one can very well adopt the point of view 
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that Wigner's theorem asserts a failure of the operator representation, and 
that it is possible to formulate and work with quantum mechanics without 
introducing specifically "quantum" probabilities. Further, at the very heart 
of the problem lies the insistence that the position and momentum be 
random variables. In the extended particle case, this insistence may simply 
not be justified. 

Before considering the extended particle case, we first consider some 
peculiarities of the probabilities appearing in quantum mechanics. For 
definiteness, we consider the probabilities regarding the ith position coordi- 
nate q of a single particle. 

(i) The state ~ itself generates a probability, since tl ~ [I 2 corresponds to 
the probability that q takes on some value. 

(ii) Corresponding to each state q~ we construct a random measure (Le., 
a hilbert-space-valued measure) E, ,  

Eo(A)--E(A)q~ (9) 

E being the spectral measure induced by the self-adjoint operator corre- 
sponding to q. 

(iii) Representing the state space as an L 2 space of random variables 
with zero means, we see that the probabifity Qr that q takes on some 
value in the region A C R 

IIE(A)OlI 2 (lO) Qo(A)=  [Iq~ll 2 

is essentially a ratio of the variances of two complex-valued random 
variables. 

As Wiener (1958) has observed, a substantial part of the mystery of 
quantum mechanics lies in the fact that these peculiarities have never been 
satisfactorily explained. 4 This mystery can be resolved, at least partially, in 
the extended particle context. First, it is quite meaningless to speak of the 
"position" of the particle, since the particle simultaneously has several 
"positions." It might be a little more meaningful to speak of a portion of the 
particle lying in some region A. But, if the particle happens to be very small, 
say 10 .3o cm across, a tremendous amount of energy would be required to 
resolve a portion of the particle. So, for all practical purposes, and for the 
range of energies for which quantum mechanics has been tested, it is quite 
meaningless to speak of a specific portion of the particle. 

4Mathematically, a single probability measure, P, can always be represented as the variance 
measure of the random measure induced by a stationary stochastic process with covariance 
function/;, where/3 is the Fourier transform of P. 
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The next best thing one can do is to speak of the probability that the 
particle, on observation, would be found in some region A. Since observa- 
tion involves an interaction with the external world, and since the particle 
interacts at its surface, this probability would be proportional to the total 
surface area of the particle in A. But, for a given region A, the surface area 
of the particle actually in A is a random variable dependent on the state, 
and its mean value would be taken to represent the above probability. 

To summarize, one can speak meaningfully only of the probability of 
finding the particle in a certain region, and the probability of finding the ith 
position coordinate in region A is given by 

eX ( A, o, ) 
e,(A)= (11) 

where X~(A, oa) is the surface area of the sphere with center 0 (say) and 
radius I~)1 that lies in the cylinder set over A in three dimensions. Thus, we 
see that Ilepll 2 is indeed proportional to the probability of finding the 
particle somewhere, and, to evaluate the probability of finding the ith 
position particle coordinate in A, we do have to construct a random 
measure. Moreover, as is customary in quantum mechanics, only the proba- 
bility measure, and not a specific random variable distributed according to 
it, can be assigned to the dynamical variable. 

Peculiarity (iii) requires a closer study. We first evaluate the probability 
P4,(A). Since EX~,(A) is additive, it is sufficient to evaluate this probability 
for regions A of the form ( -  oo, s]. This is done in the Appendix and leads 
to the expression 

EX,(s, ~0) = 27ro2e -s2/~ s < 0  

=4~ro2"27ro2e-S2/ff~+~rf~osErfc(s/o), s > 0  (12) 

where Erfc(z) is the complementary error function. Using the asymptotic 
expansion 

2 coo _ 2 e-Z2 1 1 
E r f c ( z ) = - - ~ - [  e Y d y = 7 {  - ~ z 2 + - - . }  (13) 

(12) may be written in the form 

{ o2 } EX4,(s, ~o) =froZe-s2/~ 1 + . . . .  s < 0  
2s 2 

--s2/~ 02 } 
=4~'o 2 -- 7to 2e 1 + . . . .  s > 0  

2s2 
(14) 
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In arriving at (12), it has been assumed that q~ has a complex Gaussian 
distribution with mean zero and variance 0 2 . There is some virtue to the 
Gaussian distribution; however, the choice of a different distribution would 
have only a slight effect on the empirical consequences of the theory. Also, 
the parameter o entering into (12) is not arbitrary, and is restricted by 
physical considerations, o would be, approximately, at most half the order 
of magnitude of the mean extension of the particle. With the choice of a 
complex Gaussian distribution for qs, for example, o would be of the same 
order of magnitude as the mean extension of the particle. In general, for a 
realistic model of, say, the electron, o would be quite small. 

We now claim that these probabilities do vary in an approximately 
quadratic manner with the state. More precisely, a map, q~ ~/%,  from the set 
of states to the set of finite positive measures, on the real line, would be said 
to vary quadratically if 

2. Parallelogram law: 

/%+~ +/~,_~ =2/% + 2/.t~ 

3. I%(R)= I1~112 (15) 

with #,~(A)=(1/47r)EXq,(A,o~), we see that property 1, for instance, is 
satisfied if l al is large compared to o/s. Since o/s is small, we can, for an 
approximate theory, assume that 1 is true for all values of a. 

We now observe that, for each Borel set A, there exists a sesquilinear 
map 

(~, ()--,/%,~(A) (16) 

where 

(17) 

is a complex Borel measure. Hence, there exist operators E(A) such that 

I~,,~( A)=( E( A )~, ~) (18) 

E( A)>~O, since 

( E( A )ep, ep)=t~q,,q,( A )=l~,( A )>~O (19) 
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If A 1 and A 2 are disjoint then 

<E(A t UA2)q,, #,} =p.+(A, UA2) 

= # r  +/%(A2)  

: <E(A,  ),#, ,r + <E(A~)~ ,  ,t,> 

= <[e(A,)  +E(A~) ]  ~, ~,> 

Since (20) holds for all 0 

e(A, UA~): E(A,) +E(A2) 

for disjoint A l and A 2. Further 

E ( ~ )  = 0  

trivially, and 

implies 
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(20) 

(21) 

(22) 

(23) 

(26) 

is a martingale. These conditions are, however, not easy to interpret physi- 
cally. On the other hand, since projections are weakly dense in the convex 
set of positive contractive operators, a reformulation of quantum mechanics 
in terms of positive-operator-valued measures (Davies, 1974) has certain 
advantages, including the existence of joint distributions. 

Y(s,,~)=[E(-~,~)]'% 

An alternative formulation of condition 4, which is closer to the spirit of 
statistical mechanics, is obtained by noting that E(-)  is a projection-valued 
measure iff v~- is additive, i.e., iff the random process 

4. ~E(AI),O,~(A2).=~O,~(A1A2) (25) 

where I is the identity operator. 
It follows that E(-)  is a positive-operator-valued measure. E( . )  is a 

projection valued measure if 

E(Ry=I (24) 
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6. FURTHER P R O B L E M S  

The correslSondence proposed in the preceding sections indicates that 
an interpretation of quantum mechanics as a semiclassical description of the 
dynamics of extended particles is, at least partially, feasible. However, a 
final decision on the possibility of a complete interpretation of quantum 
mechanics, along these lines, must be deferred fill the following issues are 
resolved: 

(i) to determine whether the probabilities for momentum also vary 
quadratically, and to obtain, explicitly, the relationship between 
position, momentum and the Hamiltonian; 

(ii) to determine whether such extended particles can have angular 
momentum with properties analogous to spin angular momen- 
tum; 

(iii) to determine whether the behavior of such extended particles can 
be described in a Lorentz-covariant manner. 

Although no definite solutions to these problems are available, at present, 
some possibilities are suggested below. 

So far as (i) is concerned, we observe that the various (semiclassical) 
dynamical variables connected with the extended particle are, essentially, a 
little fuzzy around the corresponding classical values for the center of mass 
of the particle. Since one can obtain the SchrOdinger equation from the 
Newtonian equations (for instance, Nelson, 1966), it is likely that the 
present methods would lead, approximately, to the usual equations of 
quantum mechanics, for a fairly large class of potentials. Slightly different 
methods would be required, however, since the present theory ascribes only 
a probability distribution, and not a specific random variable, to a dynami- 
cal variable. 

Regarding (ii) we observe that there are the widespread misconceptions 
that intrinsic angular momentum is intrinsically quantum mechanical (for 
instance, Landau and Lifshitz, 1957, p. 186) and that a semiclassical 
explanation of spin must necessarily involve a rotating extended particle 
(for instance, McGregor, 1978). Intrinsic angular momentum can be defined 
for a classical "point" particle (Synge, 1966), and for an axisymmetric 
extended particle the net angular momentum need not be zero. Further, a 
semiclassical explanation for the Davisson-Germer experiment is impossi- 
ble only if the structure of the dipole is assumed to be independent of the 
external field. Since the last assumption is quite false in the present theory, 
an explanation of spin may be difficult, but cannot be regarded as impossi- 
ble, a priori. 
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(iii) does not appear to be an excessively difficult problem, since, by 
using a multicomponent wave function, an ellipsoid can be described in 
much the same way as a sphere. 

7, EMPIRICAL TESTS 

If this approach to the interpretation of quantum mechanics is correct, 
quantum theory would fail in certain situations. Quantitative predictions in 
concrete experimental situations may take some time to develop. Qualita- 
tively, however, some situations, in which some of the axioms of quantum 
theory would fail, are immediately discernible. 

(a) According to the present theory, the probabilities given by quan- 
tum mechanics are approximately correct for regions that are large com- 
pared to the mean extension of the particle. So, one can expect failures 
when Is l, in equation (5.4), is small. In practice, such situations would occur 
only when two particles interact at very high energies. It may not be feasible 
to test the other possibility, viz., that of o being large. 

(b) With extended particles, at high energies, departures from spherical 
symmetry are bound to occur. One way of testing this would be to look for 
quadrupole moments in the case of charged particles with spin. 

(c) In case the oscillations of the particle are nonlinear, failures at low 
energies are also possible. In such a case, the pulsations of the particle may 
be considered as a superposition of oscillations at different frequencies. This 
would imply that the de Broglie relationship, ?~v=c2/v, is only approxi- 
mately correct, and that other "wavelengths" can be associated with the 
particle, for the same value of the energy. These wavelengths would be 
observable as ~-~ oo, i.e., at low energies. 

8. C ONC LUSIONS 

It is, at least partially, possible to interpret quantum mechanics as a 
semiclassical description of the dynamics of extended particles. If this 
interpretation is correct, then quantum mechanics would fail at very high, 
and, possibly, at very low energies. 

APPENDIX 

A. Evaluation of the Distribution Function. Let 

(a.1) 
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and 

Clearly 

and for t>~0, 

Fs(t ) =P{w, X(s, o~) <~t} 

Fs(t ) =0 for t<0, 

( o~, s ( s ,  o, ) ~ t  } = ( o~, s ~  - I~ l  ) u { ~ , - I ~ 1 ~ , < 1 ~ 1  

and 27r [q,J(s+ Iq,[)~t} U {o~, 1~[ ~ s  

since, 

X( s, o~ )=O i f s < - I O l ,  

=2~1r if -I~l<s<l~[ 

--4~rlq, I 2 if Jq, l~<s 

Ralu 

(A.2) 

(A.3) 

and 4~rlq,12 ~<t } 

(A.4) 

(A.5) 

The probability of each of the sets in (A.4) is evaluated below. 

(1) p(s<~ - I'#l } =P(l't'l ~< - s}  

=FIoI(--s ) (A.6) 

where FI, 1 is the distribution function of jq~[. 

(2) P(lepI<~s and 4r162 i f s<0  (A.7) 

=Fl,l((t/4cr)'/2 ) if t~<4~rs2 l s~>0 

--: Fj~,I (s) if t~>a~'sZJ (A.8) 

(3) e{-I~l<~<l~l and 2~rl,~12+2~rsl,~l-t~<o) 

The quadratic equation 2~rx2 + 2~rsx-t = 0 always has two real roots since 
the discrirninant A=4cr2s 2 +8~rt>0, since t>0. 
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Let 

s+_(t) = - 2rrs-+(4crZs2+ 8~rt)'/2 
4~r 

= _s/2+�89 (s2+2t/rr),/2 (A.9) 

then 27rlq, 12 +2~rs I*1- t ~ o  iff 

s_ l l s+ (A.10) 

If s~>O then 

S _ - -  
s l ( s 2 + 2 t ) l / 2  s - -< (A.11) 2 2 7r - - ~ < s  

and s +/> s if 

s 1 (  2 t )  1/2 
2 + 2  s2+--~r ~>s 

i.e., iff 

t>~4~rs z (A.12) 

Thus the above probability is zero if t<-4~rs 2 and is otherwise 

FI,  I (s+)--FIg, I (s )  (A. 13) 

If s ~< 0 then 

s 1 ( s 2 + 2 t ) l / 2  s<: 
- - -  ~<  - ~ --~ - s  ( a . 1 4 )  s _ -  2 2 rr 

and 

s+ >/--s ,  since t>0 .  (A.15) 

It follows that the above probability is Fl~l(s+)-Flol(-S ) for all t~>0. 
Thus 

=V,, , ( ,+(t))  

if t<~ 4~rs z } 

if t>4rrs 2 
s~>0 (A.16) 
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and F~(t ) :Fl~l (s+( t ) )  if s < 0  (A.17) 

EX,(s, ,~ ) = f~tdF~(t) (A.18) 
"0  

has been evaluated below assuming that q) has a complex Gaussian distribu- 
tion with mean zero and variance a 2. 

B. Evaluation of the Integral 

I =  fo~tdF~( t ) (B.1) 

Case L If s<0,  then 

Fs(t)=Fl~l(S+(t))  
where 

(B.2) 

drill(x) = (1/o2)xe-~2/2~ dx, x - 0  

=0,  x~<0 (B.3) 

and s+(t) is defined by (A.9) and for simplicity we take II ~ II 2= 202. 
Integrating by parts, making the transformation 

t - , v =  + ( s2 + 2t/rr ) 1/2 (B.4) 

and observing that when t = 0, v = - s since s < 0 

I =  f_ ~rve-(V-sY/8~ dv (B.5) 

with 

 ,ec 

if t<~ 4qrs 2 

if t~4rrs z 

I=4rro2e-S2/2~ rr(~ ~/2 os 

Case II. If s~>0, then 

r (  t ) = Fl~l( ( t/4~r ) l/z) 

=Vi~t(s+(t)) (B.7) 
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wi th  FI~ I a n d  s+(t)  as be fore  a n d  

1= I~ +12 

I i =  fo4~S=tdFl,l( ( t/4~r )l/2 ) 

= -47rs2e-,2/2o2+8~ro2(1 _e-S2/2o ~) 

a n d  

reduces  as i n  case I above  to give 

12:  41rs ae-s2/2~ + 4~r ~176 

+ ~  ~o Erfc(s/~-0 ) 

695 

03.8) 

(B. 9) 

(B. 10) 

(B. 11) 
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